A self-healing multispectral transparent adhesive peptide glass (2024)

References

  1. Zanotto, E. D. & Mauro, J. C. The glassy state of matter: its definition and ultimate fate. J. Non Cryst. Solids 471, 490–495 (2017).

    Article ADS CAS Google Scholar

  2. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article ADS CAS PubMed Google Scholar

  3. Shelby, J. E. Introduction to Glass Science and Technology (Royal Society of Chemistry, 2005).

  4. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article ADS CAS PubMed Google Scholar

  5. Wang, H. et al. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl Acad. Sci. USA 117, 11299–11305 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar

  6. Huang, Z. et al. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 21, 103–109 (2022).

    Article ADS CAS PubMed Google Scholar

  7. Zhang, Q. et al. Formation of a supramolecular polymeric adhesive via water-participant hydrogen bond formation. J. Am. Chem. Soc. 141, 8058–8063 (2020).

    Article Google Scholar

  8. Dong, S. et al. Structural water as an essential comonomer in supramolecular polymerization. Sci. Adv. 3, eaao0900 (2017).

    Article PubMed PubMed Central Google Scholar

  9. Barrat, J. L., Baschnagel, J. & Lyulin, A. Molecular dynamics simulations of glassy polymers. Soft Matter 6, 3430–3446 (2010).

    Article ADS CAS Google Scholar

  10. Colmenero, J. Are polymers standard glass-forming systems? the role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. J. Phys. Condens. Matter 27, 103101 (2015).

    Article ADS CAS PubMed Google Scholar

  11. Balkenende, D. W. R., Monnier, C. A., Fiore, G. L. & Weder, C. Optically responsive supramolecular polymer glasses. Nat. Commun. 7, 1–9 (2016).

    Article Google Scholar

  12. Lebel, O. & Soldera, A. in Advanced Materials (eds van de Ven, T. & Soldera, A.) 239–260 (De Gruyter, 2019).

  13. Wuest, J. D. & Lebel, O. Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron 65, 7393–7402 (2009).

    Article CAS Google Scholar

  14. Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. 7, 861–866 (2006).

    Article CAS Google Scholar

  15. Hazra, P., Chakrabarty, D. & Sarkar, N. Intramolecular charge transfer and solvation dynamics of Coumarin 152 in aerosol-OT, water-solubilizing reverse micelles, and polar organic solvent solubilizing reverse micelles. Langmuir 18, 7872–7879 (2002).

    Article CAS Google Scholar

  16. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article CAS Google Scholar

  17. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article ADS CAS PubMed Google Scholar

  18. Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    Article PubMed PubMed Central Google Scholar

  19. Gilead, S. & Gazit, E. Self-organization of short peptide fragments: from amyloid fibrils to nanoscale supramolecular assemblies. Supramol. Chem. 17, 87–92 (2005).

    Article CAS Google Scholar

  20. Zhao, X. & Zhang, S. Designer self-assembling peptide materials. Macromol. Biosci. 7, 13–22 (2007).

    Article PubMed Google Scholar

  21. Cui, H., Webber, M. J. & Stupp, S. I. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept. Sci. 94, 1–18 (2010).

    Article CAS Google Scholar

  22. Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014).

    Article CAS PubMed Google Scholar

  23. Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 3–6 (2010).

    Article Google Scholar

  24. Chung, C. W. et al. Label-free characterization of amyloids and alpha-synuclein polymorphs by exploiting their intrinsic fluorescence property. Anal. Chem. 13, 5367–5374 (2022).

    Article Google Scholar

  25. Adler-Abramovich, L. et al. Bioinspired flexible and tough layered peptide crystals. Adv. Mater. 30, 1–6 (2018).

    Google Scholar

  26. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article CAS PubMed Google Scholar

  27. Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article CAS PubMed Google Scholar

  28. Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

    Article CAS PubMed Google Scholar

  29. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    Article CAS PubMed Google Scholar

  30. Yan, X. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article CAS PubMed Google Scholar

  31. Arnon, Z. A. et al. On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. iScience 24, 102695 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar

  32. Ji, W. et al. Rigid tightly packed amino acid crystals as functional supramolecular materials. ACS Nano 13, 14477–14485 (2019).

    Article CAS PubMed Google Scholar

  33. Zhdanova, N. G. et al. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem. Photobiol. Sci. 14, 897–908 (2015).

    Article CAS PubMed Google Scholar

  34. Jang, H.-S. et al. Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat. Commun. 5, 3665 (2014).

    Article ADS PubMed Google Scholar

  35. Brillante, B. A. et al. Characterization of phase purity in organic semiconductors by lattice-phonon confocal Raman mapping: application to pentacene. Adv. Mater. 17, 2549–2553 (2005).

    Article CAS Google Scholar

  36. Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article ADS CAS PubMed PubMed Central Google Scholar

  37. Yokota, H., Sakata, H., Nishibori, M. & Kinosita, K. Ellipsometric study of polished glass surfaces. Surf. Sci. 16, 265–274 (1969).

    Article ADS Google Scholar

  38. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two‐dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article ADS CAS Google Scholar

  39. Hibbert, F. & Emsley, J. Hydrogen bonding and chemical reactivity. Adv. Phys. Org. Chem. 26, 255–379 (1990).

    CAS Google Scholar

  40. Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I. & Higgs, T. P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42, 390–394 (1976).

    Article ADS CAS Google Scholar

  41. Larsen, F. H. in Annual Reports on NMR Spectroscopy Vol. 71 (ed. Webb, G. A.) 103–137 (Elsevier, 2010).

  42. Hernández, B., Coïc, Y., Pflüger, F., Kruglik, G. & Ghomi, M. All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations. J. Raman Spectrosc. 47, 210–220 (2016).

    Article ADS Google Scholar

  43. Ihli, J. et al. Mechanical adaptation of brachiopod shells via hydration-induced structural changes. Nat. Commun. 12, 5383 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar

  44. Ge, H. et al. Fracture behavior of colloidal polymer particles in fast-frozen suspensions viewed by cryo-SEM. Macromolecules 39, 5531–5539 (2006).

    Article ADS CAS Google Scholar

  45. Desloir, M., Benoit, C., Bendaoud, A., Alcouffe, P. & Carrot, C. Plasticization of poly(vinyl butyral) by water: glass transition temperature and mechanical properties. J. Appl. Polym. Sci. 136, 47230 (2019).

    Article Google Scholar

  46. Kilburn, D. et al. Water in glassy carbohydrates: opening it up at the nanolevel. Phys. Chem. 33, 12436–12441 (2004).

    Google Scholar

  47. Flores, A., Ania, F. & Baltá-Calleja, F. J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 50, 729–746 (2009).

    Article CAS Google Scholar

  48. Wang, Q., Chen, H., Wang, Y. & Sun, J. Thermal shock effect on the glass thermal stress response and crack propagation. Procedia Eng. 62, 717–724 (2013).

    Article CAS Google Scholar

  49. Frankberg, E. J. et al. Highly ductile amorphous oxide at room temperature and high strain rate. Science 366, 864–869 (2019).

    Article ADS CAS PubMed Google Scholar

  50. Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article CAS PubMed Google Scholar

  51. Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article PubMed Google Scholar

Download references

A self-healing multispectral transparent adhesive peptide glass (2024)
Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6229

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.